TOPIC PLAN		
Partner organization	Goce Delcev University - Stip, North Macedonia	
Topic	Application of Derivatives	
Lesson title	Minimizing and Maximizing Problems	
Learning objectives	Students will be able to estimate minimum and maximum values of different sizes using differentiation; Students will acquire and deal with derivatives of a function; Students will be able to deal with different problems in everyday life, which require finding minimum or maximum value of a given size; \checkmark Students are encouraged to use technology and different software in their work, while considering problem-based situations.	Strategies/Activities \square Graphic Organizer -Think/Pair/Share \square Modeling -Collaborative learning \square Discussion questions \square Project based learning Problem based
Aim of the lecture / Description of the practical problem	The aim of the lecture is to make students able to calculate derivatives of a function and apply the derivatives to calculate minimum and maximum value. The teacher gives the next problem to the students: Car B is 30 km directly east of Car A and begins moving west at $90 \mathrm{~km} / \mathrm{h}$. At the same moment car A begins moving north at $60 \mathrm{~km} / \mathrm{h}$. What will be the minimum distance between the cars and at what time t does the minimum distance occur?	Assessment for learning \square Observations -Conversations \square Work sample \square Conference \square Check list \square Diagnostics
Previous knowledge assumed:	- formulas for rectilinear motion - Pythagorean Theorem - algebraic equations - differentiating techniques - chain rule	Assessment as learning \square Self-assessment \square Peer-assessment \square Presentation \square Graphic Organizer Homework

[^0]| Introduction / |
| :--- |
| Theoretical |
| basics |

First, we are considering the given problem.

Assessment of
learning
$\square T e s t$
\square Quiz
\square Presentation
\square Project
\square Published work

The two cars travel according to the rectilinear motion with the following speeds:

CAR A: North at $60 \mathrm{~km} / \mathrm{h}$
CAR B: West at 90 km/h
Let variable x be the distance car A travels in t hours, and variable y the distance car B travels in t hours. Let variable L be the distance between cars A and B after t hours.

Thus, by the Pythagorean Theorem distance L is $L=\sqrt{x^{2}+(30-y)^{2}}$.
If this problem is solving by equations for rectilinear motion is not simple, but derivatives of the functions can help in easily solving of this problem.

Before we differentiate, we will rewrite the right-hand side as a function of t only. Recall that if travel is at a CONSTANT rate then
$($ distance traveled $)=(\text { rate of travel })^{*}($ time elapsed $)$

[^1]Thus, for car A the distance traveled after thours is
(Equation 1) $x=60 t$,
and for car B the distance traveled after t hours is
(Equation 2) $\mathrm{y}=90 \mathrm{t}$.
By using of Equations 1 and 2, the equation for L can be rewritten as a function of t only. Thus, we wish to minimize the distance between the two cars:

$$
\begin{aligned}
L & =\sqrt{x^{2}+(30-y)^{2}}= \\
& =\sqrt{(60 t)^{2}+(30-90 t)^{2}}= \\
& =\sqrt{3600 t^{2}+(30-90 t)^{2}}
\end{aligned}
$$

Such minimizing / maximizing problems can easily be solved with an application of derivatives of a function.

If $y=f(x)$ is given function with domain D and $x_{0} \in D$, let $y_{0}=f\left(x_{0}\right)$. If the argument x has been changed for Δx and the new one is $x_{0}+\Delta x \in D$, then the value of the function changes to $f\left(x_{0}+\Delta x\right)$.

Definition: If the limit $\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)}{\Delta x}$ exists, we call it the first derivative of the function $y=f(x)$ at the point x_{0}.

According to the definition, the derivative of a function is related to changes of the values of the argument and the function.
If we use function to represent some size, we can use derivative of a function in a problems related to the changes of the values of that size.

Using the definition of the first derivative, the derivatives of some elementary functions are calculated and are now used for calculating derivatives of other functions. A table of some elementary functions with their derivatives is the

[^2]| following: $\begin{aligned} & f(x)=c, \quad f^{\prime}(x)=0 \\ & f(x)=x^{n}, \quad f^{\prime}(x)=n x^{n-1} \\ & f(x)=\frac{1}{x}, \quad f^{\prime}(x)=-\frac{1}{x^{2}} \\ & f(x)=\sqrt{x}, \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\ & f(x)=e^{x}, \quad f^{\prime}(x)=e^{x} \\ & f(x)=\ln x, \quad f^{\prime}(x)=\frac{1}{x} \\ & f(x)=a^{x}, \quad f^{\prime}(x)=a x^{n-1} \end{aligned}$
 Let $f(x)$ and $g(x)$ be differentiable functions and c is a constant. Then the following equations hold:
 $(c f(x))^{\prime}=c f^{\prime}(x)-$ constant multiple rule
 $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$ - sum rule
 $(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$ - difference rule $(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
 product rule $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}$
 $g(x) \neq 0$ - quotient rule
 Definition: If $f^{\prime}(x)$ is a first derivative of a function $f(x)$, then its derivative (if it exists), i.e. $\left[f^{\prime}(x)\right]^{\prime}=f^{\prime \prime}(x)$ is called the second derivative of a function $f(x)$. | |
| :---: | :---: |

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	The derivatives can be applied for calculating extreme values of different sizes. If $y=f(x)$ is given function, the function f has its minimum value at if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$. The function f has its maximum value at $x=c$ if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$. If we consider certain size as a function with one variable, we can find its minimum or maximum values with the above rules.
Action	Let us return to the given problem and construct an appropriate function to find the minimum distance between the two cars. Here is the given problem: Car B is 30 km directly east of Car A and begins moving west at 90 km $h . ~ A t ~ t h e ~ s a m e ~ m o m e n t ~ c a r ~$
begins moving north at 60 km/h. What will be the	
minimum distance between the cars and at what time	
t does the minimum distance occur?	
If is the time, the distance between the two cars at	

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Materials / equipment / digital tools / software	Literature given in the references at the end of the document Mathematica for plotting functions.		
Consolidation	With the given examples students can consider that the real functions and their derivatives are important for solving real life problems. Students will learn what is a derivative of a function and how to calculate it. They can learn how to apply differentiation and derivatives to maximize / minimize certain value by given conditions. Students can use technology, different digital tools and software as a help for solving problems, but can also realize that even with technology, solving different everyday problems is difficult without math knowledge.		
Reflections and next steps			
Activities that worked Parts to be revisited			
Problem solving	collaboration, using technology	Depends on conversation teacher will rea students had appropriate pa	the students, in a with students the alize the difficulties that and then revisit rts.
References			
[1] M. L. Bittinger, D. J. Ellenbogen and S.A. Surgent (2012), "Calculus and its applications", Addison-Wesley [2] G. Strang "Calculus", Wellelye-Cambridge Press [3] S. Calaway D. Hoffman and D.Lippman (2014) "Applied Calculus" [4] P.D. Lax, M. S.Terrell (2014) "Calculus with Applications", Springer			

[^3]
[^0]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^3]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

