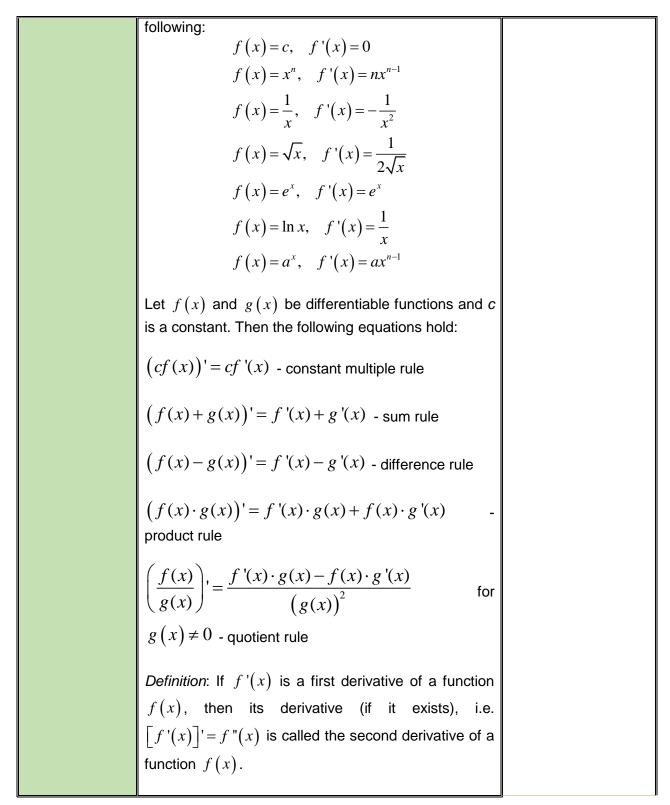


	TOPIC PLAN	
Partner	Goce Delcev University – Stip, North Macedonia	
organization	Application of Davidations	
	Application of Derivatives	
Lesson title	Minimizing and Maximizing Problems ✓ Students will be able to estimate minimum	
Learning objectives	 ✓ Students will be able to estimate minimum and maximum values of different sizes using differentiation; ✓ Students will acquire and deal with derivatives of a function; ✓ Students will be able to deal with different problems in everyday life, which require 	Strategies/Activities Graphic Organizer Think/Pair/Share Modeling Collaborative learning
	 Finding minimum or maximum value of a given size; Students are encouraged to use technology and different software in their work, while considering problem-based situations. 	 Discussion questions Project based learning Problem based learning
Aim of the lecture / Description of the practical problem	 The aim of the lecture is to make students able to calculate derivatives of a function and apply the derivatives to calculate minimum and maximum value. The teacher gives the next problem to the students: <i>Car B is 30 km directly east of Car A and begins moving west at 90 km/h. At the same moment car A begins moving north at 60 km/h. What will be the minimum distance between the cars and at what time t does the minimum distance occur?</i> 	Assessment for learning Observations Conversations Work sample Conference Check list Diagnostics
Previous knowledge assumed:	 formulas for rectilinear motion Pythagorean Theorem algebraic equations differentiating techniques chain rule 	Assessment as learning Self-assessment Peer-assessment Presentation Graphic Organizer Homework

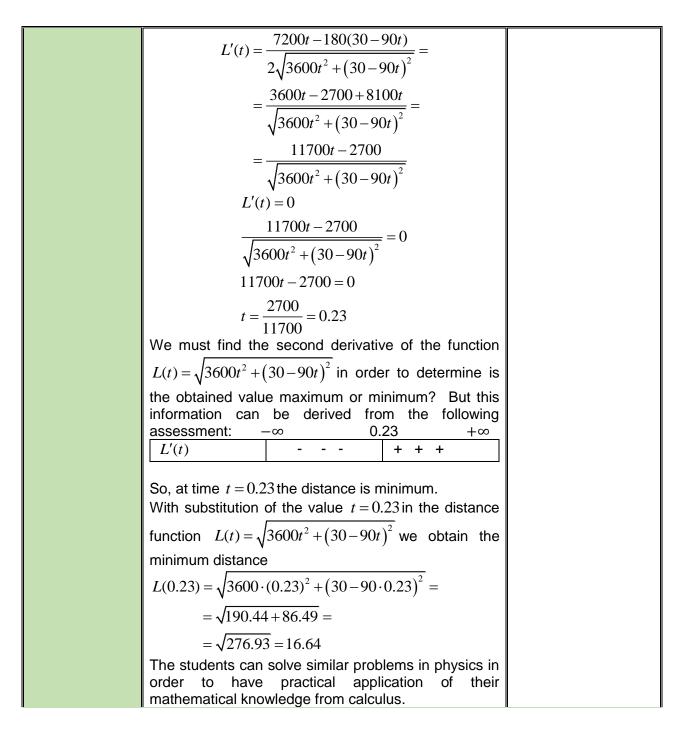
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."


Thus, for car A the distance traveled after t hours is	
(Equation 1) $x = 60t$,	
and for car B the distance traveled after t hours is	
(Equation 2) $y = 90t$.	
By using of Equations 1 and 2, the equation for L can be rewritten as a function of t only. Thus, we wish to minimize the distance between the two cars: $L = \sqrt{x^2 + (30 - y)^2} =$	
$=\sqrt{(60t)^2 + (30 - 90t)^2} =$	
$=\sqrt{3600t^2 + (30 - 90t)^2}$	
Such minimizing / maximizing problems can easily be solved with an application of derivatives of a function.	
If $y = f(x)$ is given function with domain D and	
$x_0 \in D$, let $y_0 = f(x_0)$. If the argument x has been	
changed for Δx and the new one is $x_0 + \Delta x \in D$,	
then the value of the function changes to $f(x_0 + \Delta x)$.	
<i>Definition:</i> If the limit $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x)}{\Delta x}$ exists, we call it	
the first derivative of the function $y = f(x)$ at the	
point x_0 .	
According to the definition, the derivative of a function is related to changes of the values of the argument and the function. If we use function to represent some size, we can use derivative of a function in a problems related to the changes of the values of that size.	
Using the definition of the first derivative, the derivatives of some elementary functions are calculated and are now used for calculating derivatives of other functions. A table of some elementary functions with their derivatives is the	

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Co-funded by the Erasmus+ Programme of the European Union

[&]quot;The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."



	The derivatives can be applied for calculating extreme values of different sizes. If $y = f(x)$ is given function, the function f has its minimum value at if $f'(c) = 0$ and $f''(c) > 0$. The function f has its maximum value at $x = c$ if $f'(c) = 0$ and $f''(c) < 0$. If we consider certain size as a function with one variable, we can find its minimum or maximum values with the above rules.	
Action	Let us return to the given problem and construct an appropriate function to find the minimum distance between the two cars. Here is the given problem: <i>Car B is 30 km directly east of Car A and begins moving west at 90 km/h. At the same moment car A begins moving north at 60 km/h. What will be the minimum distance between the cars and at what time t does the minimum distance occur?</i> If t is the time, the distance between the two cars at the time t is the function: $L(t) = \sqrt{3600t^2 + (30 - 90t)^2}$ According to the rules which determine the extreme values, we have to calculate the first derivative and calculate t such that $L'(t) = 0$. In order to find the first derivative, we must use the chain rule.	

Materials / equipment / digital tools / software	Literature given in the references at document Mathematica for plotting functions.	the end of the	
Consolidation	With the given examples students can consider that the real functions and their derivatives are important for solving real life problems. Students will learn what is a derivative of a function and how to calculate it. They can learn how to apply differentiation and derivatives to maximize / minimize certain value by given conditions. Students can use technology, different digital tools and software as a help for solving problems, but can also realize that even with technology, solving different everyday problems is difficult without math knowledge.		
Reflections and	next steps		
Activities that w	Activities that worked Parts to be revisited		
Problem solving, collaboration, using technology		Depends on the students, in a conversation with students the	
		teacher will realize the difficulties tha students had and then revisi appropriate parts.	
References		students had and then revisi	